Chia sẻ công thức tính diện tích tam giác trong không gian Oxyz, cũng như cách tính diện tích tam giác trong không gian Oxyz, chi tiết nhất. Cùng tham khảo cách giải bài tập tính diện tích tam giác trong không gian Oxyz, để từ đó giải đúng và nhanh các bài tập thuộc dạng toán này nhé.

Diện tích tam giác trong không gian Oxyz

Công thức tính diện tích tam giác (Delta ABC) trong hệ tọa độ Oxyz là:

(S_{Delta ABC} = frac{1}{2}left | left [ vec{AB};vec{AC} right ] right |)

Bài tập tính diện tích tam giác trong không gian Oxyz

Ví dụ 1: Trong không gian Oxyz cho 3 điểm A(1;2;1), B(2;-1;3), C(5;2;-3). Tính diện tích của tam giác ABC.

Cách giải

Ta có (vec{AB}=(1;-3;3)), (vec{AC}=(4;0;-4))

=> (left [ vec{AB},vec{AC} right ] = left ( begin{vmatrix} -3 &3 \ 0 & 4 end{vmatrix};-begin{vmatrix} 1 & 3\ 4 & -4 end{vmatrix};begin{vmatrix} 1 &-3 \ 4 & 0 end{vmatrix} right )=(-12;16;-12))

=> Diện tích tam giác ABC là:

(S= frac{1}{2}.left |left [ vec{AB},vec{AC} right ] right |=frac{1}{2} .sqrt{(-12)^{2}+16^{2}+(-12)^{2}} =sqrt{34})

Ví dụ 2: Cho ba điểm A(1;0;0), B(0;0;1), C(2;1;1).

a, Chứng minh rằng A, B, C là một đỉnh của tam giác

b, Tính diện tích tam giác ABC

Cách giải

a, Ta có (vec{AB}=(-1;0;1)); (vec{AC}=(1;1;1))

Suy ra: (left [ vec{AB},vec{AC} right ]=left ( begin{vmatrix} 0 & 1\ 1&1 end{vmatrix};begin{vmatrix} 1 &-1 \ 1 & 1 end{vmatrix};begin{vmatrix} -1 &0 \ 1& 1 end{vmatrix} right )= (-1;2;-1)neq vec{0})

Vậy 2 véc tơ (vec{AB}) và (vec{AC}) không cùng phương.

Vậy A,B,C là 3 đỉnh của một tam giác

b, Diện tích của tam giác ABC là:

(S_{ABC}=frac{1}{2}left | left [ vec{AB};vec{AC} right ] right |=frac{1}{2}.sqrt{(-1)^{2}+2^{2}+(-1)^{2}} =frac{sqrt{6}}{2})

Ví dụ 3: Chọn đáp án đúng: trong không gian với hệ tọa độ Oxyz cho ba điểm A(-2;2;1), B(1;0;2), C(-1;2;3). Diện tích tam giác ABC là?

  1. (S_{ABC}= frac{3sqrt{5}}{2})
  2. (S_{ABC}= 3sqrt{5})
  3. (S_{ABC}= 4sqrt{5})
  4. (S_{ABC}= frac{5}{2})

Cách giải

Ta có: (vec{AB}=(3;-2;1)), (vec{AC}=(1;0;2))

=> (left [ vec{AB};vec{AC} right ] =(-4;-5;2))

Diện tích tam giác ABC là:

(S_{ABC}= frac{1}{2}.left | left [ vec{AB};vec{AC} right ] right |= frac{3sqrt{5}}{2})

Vậy đáp án đúng là A.

Hi vọng sau khi tham khảo và biết công thức tính diện tích tam giác trong không gian Oxyz sẽ giúp các bạn học sinh có thể giải đúng bài tập tính diện tích tam giác trong không gian Oxyz trong thời gian nhanh nhất. Cùng cập nhật thêm nhiều công thức tính diện tích khác nhau nữa nhé!